Objective:

As Statistics is being major contribution for research and it overlaps a great deal with machine learning   as well as with deep learning applications, we have developed a model in order to find out which statistical concepts applied over particular research papers using topic modeling.

Approach

We have applied LDA (Latent Dirichlet Allocation) a concept of Topic modeling. Topic is a type of statistical modeling for discovering the abstract “topics” that occur in a collection of documents. Latent Dirichlet Allocation (LDA) is an example of topic model and is used to classify text in a document to a particular topic. It builds a topic per document model and words per topic model, modeled as Dirichlet distributions.

We have scrapped the data from various abstracts from the research papers and then the text was preprocessed by performing the following steps. Tokenization: Split the text into sentences and the sentences into words. Lowercase the words and remove punctuation.Words that have fewer than 3 characters are removed.All stopwords are removed.

Words are lemmatized — words in third person are changed to first person and verbs in past and future tenses are changed into present.

Words are stemmed — words are reduced to their root form.

Then the preprocessed text is converted into features by using TF_IDF algorithm.And these features used to derive the topics using LDA Technique and the derived topics are

• Probability,
• Distributions,
• Inference,
• Design of experiments,
• Sampling theory,
• Regression analysis,
• Multivariate analysis
• Stochastic process

Here is the list of the terms under each topic

And the topic model is represented using heatmap and dendogram to validate the model. Once the model is validated we developed classification algorithm using navie bayes to classify the future documenting to these topics.

Impact: Whenever we get any new document with this we can easily classify the document in which which statistical concept is applied.

Print Friendly, PDF & Email
Identifying which statistical concepts are applied on various research papers using Topic Modeling.

Venugopal Manneni


A doctor in statistics from Osmania University. I have been working in the fields of Analytics and research for the last 15 years. My expertise is to architecting the solutions for the data driven problems using statistical methods, Machine Learning and deep learning algorithms for both structured and unstructured data. In these fields I’ve also published papers. I love to play cricket and badminton.


Post navigation